Pii: S0165-0114(02)00299-3

نویسنده

  • Chuan-Kai Lin
چکیده

In this paper, a new reinforcement learning scheme is developed for a class of serial-link robot arms. Traditional reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment. In the proposed reinforcement learning scheme, an agent is employed to collect signals from a 0xed gain controller, an adaptive critic element and a fuzzy action-generating element. The action generating element is a fuzzy approximator with a set of tunable parameters, and the performance measurement mechanism sends an error metric to the adaptive critic element for generating and transferring a reinforcement learning signal to the agent. Moreover, a tuning algorithm of the proposed scheme that can guarantee both tracking performance and stability is derived from the Lyapunov stability theory. Therefore, a combination of adaptive fuzzy control and reinforcement learning scheme is also concerned with algorithms for eliminating a sequence of decisions from experience. Simulations of the proposed reinforcement adaptive fuzzy control scheme on the cart-pole balancing problem and a two-degree-of freedom (2DOF) manipulator, SCARA robot arm verify the e6ectiveness of our approach. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Choquet integral for the aggregation of interval scales in multicriteria decision making

This paper addresses the question of which models fit with information concerning the preferences of the decision maker over each attribute, and his preferences about aggregation of criteria (interacting criteria). We show that the conditions induced by these information plus some intuitive conditions lead to a unique possible aggregation operator: the Choquet integral.

متن کامل

Universal approximation theorem for uninorm-based fuzzy systems modeling

Most existing universal approximation results for fuzzy systems are based on the assumption that we use t conorms and t conorms to represent and and or Yager has proposed to use within the fuzzy system modeling paradigm more general operations based on uninorms In this paper we show that the universal approximation property holds for an arbitrary choice of a uninorm

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002